Tag Archives: 50l gas cylinder

China best 50L Refillable Helium Oxygen Nitrogen Lar CNG Acetylene CO2 Hydrogeen CNG 150bar/200bar High Pressure Seamless Steel Gas Cylinder near me shop

Product Description

Product Description:

Helium Cylinder Specification: 

Water Capacity: 50L 
Outside Diameter: 232mm 
Wall Thickness: 6.0mm 
Working Pressure: 200BAR 
Test Pressure: 300BAR 
Empty Weight: 60kgs/unit 
Height: 1450mm 
Material: 34CrMo4 
Storage Gas: 10 Cu M3 

Helium Cylinder General Introduction: 

1. CYY has been specializing in seamless steel cylinders designing and manufacturing for over 10 years, and has gained a good reputation at home and abroad with the support of professional and powerful team.
2. Our gas cylinders are made from superior aluminum alloy 6061 so that they features high strength (No splashing fragment in explosion), lightweight (40% lighter than steel cylinders) and corrosion resistance etc.
3. Our gas cylinders interior and exterior are treated by passivation which can make sure the gases clean, odorless and anticorrosive.
4. CYY production and management are carried out by ISO9000 Quality Management System strictly and keep a good quality.
5. There are various kinds of gas cylinders for your choice and we can also design and manufacture any new type gas cylinder according to customers’ requirement.

Cylinder Design: 

Cylinder Production Process:

Cylinder Loading and Transporting:


Company Information

Creative and Trustworthy Company:

Located in ZHangZhoug, CYY is 1 of professional suppliers of gas equipment such as gas cylinders, pumps, ASU plant, LNG plant, storage tanks and gas filling stations and affiliated equipment parts such as gas cylinder valves etc. We have over 10 years’ experience in gas industry and have received a good reputation in this field. Our products have been exported to many countries such as U.S.A. and European countries and enjoy popularity all over the world.

Quality and Security System:

We have implemented strict complete quality and secutiry control system, which ensures that each product can meet the quality and security requirement of our customers. We have been adopting the advanced science and technology to produce gas culinders and affiliated equipment since our company is established. In addition, all of our products have been strictly inspected before shipment.

We Are Reliable Partners!

We are dedicated to realizing the largest profit for both our clients and ourselves. We have been making great effort to achieve this CZPT project and sincerely hope we will have long-term partnership in the soon future!

Welcome all clients to our compy for visit!

Frequently Asked Questions:

Q1.What is the capacity of this gas cylinder?

A1.The Capacity of this gas cylinder is 50L.

Q2.What is the delivery time of this gas cylinder?

A2.The delivery of this gas cylinder is 30days after the deposit received.

Q3.What payment terms do you usually use?

A3.We accept TT, 30% as deposit and 70% before delivery.

Q4.What certification do you provide for clients?

A4.We have CE, DOT and TPED Certification of our products.


   Helium Cylinder Specification
Gas Cylinder Standard EN ISO9809-1        
Water Capacity 50L
Outside Diameter 232mm
Wall Thickness 6.0mm
Working Pressure 200BAR
Test Pressure 300BAR
Cylinder Height 1450mm
Empty Weight 60kgs/unit
Cylinder Material 34CrMo4
Storage Gas 10m3




What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.


Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China best 50L Refillable Helium Oxygen Nitrogen Lar CNG Acetylene CO2 Hydrogeen CNG 150bar/200bar High Pressure Seamless Steel Gas Cylinder     near me shop China best 50L Refillable Helium Oxygen Nitrogen Lar CNG Acetylene CO2 Hydrogeen CNG 150bar/200bar High Pressure Seamless Steel Gas Cylinder     near me shop

China Good quality TUV 50L 200bar Gas Cylinder Export to South America with Great quality

Product Description

JP brand medical oxygen cylinder

Model Number: ISO229-50-200

Material: Steel  34Crmo4

new seamless steel gas cylinder for N2,O2 

Industrial nitrogen Gas

Pressure: High

Place of Origin: China (Mainland)

Brand Name: CZPT seamless steel cylinder

Thickness of seamless:4.3mm

weight of seamless: 50kg



40L and 50L medical oxygen cylinders  
Type   (mm)
Design Wall
ISO232-40-150 219 40 1167 43 200 5.2 37Mn
ISO232-47-150 47 1351 49
ISO232-50-150 50 1430 51.6
ISO232-40-200 232 40 1156 44.9 200 5.2 34CrMo4
ISO232-46.7-200 46.7 1333 51
ISO232-47-200 47 1341 51.3
ISO232-50-200 50 1420 54
EN232-40-210 232(TPED) 40 1156 44.9 230 5.8 34CrMo4
EN232-46.7-210 46.7 1333 51
EN232-47-210 47 1341 51.3
EN232-50-210 50 1420 54
EN232-40-230 40 1156 44.9 230 5.8 34CrMo4
EN232-46.7-230 46.7 1333 51
ISO232-47-230   47 1341 51.3
ISO232-50-230   50 1420 54
ISO267-40-150 267 40 922 43.3 150 5.8 37Mn
ISO267-50-150 50 1119 51.3

50L (10M3) Oxygen cylinder record of hydrostatic test                 pressure time ≥ 60S
S.N Serial No. ()The weight without valve&cap(kg) Volumetric Capacity(L) Total expansion(ml) Permanent expansion(ml) Percent of Permanent to totalexpanison(%) Test Pressure 250Bar Lot and Batch No.
351 18Y571 001 56.4 50.2  215.1  3.1  1.4  300 18Y571
352 18Y571 002 56.5 50.4  208.5  3.0  1.4  300 18Y571
353 18Y571 003 56.4 50.2  212.2  2.8  1.3  300 18Y571
354 18Y571 004 56.2 50.0  214.9  3.0  1.4  300 18Y571
355 18Y571 005 56.3 50.2  212.2  2.8  1.3  300 18Y571
356 18Y571 006 56 50.0  219.8  2.9  1.3  300 18Y571
357 18Y571 007 56.3 50.1  213.5  2.8  1.3  300 18Y571
358 18Y571 008 56.1 50.4  210.5  3.2  1.5  300 18Y571
359 18Y571 009 56.1 50.5  212.1  2.8  1.3  300 18Y571
360 18Y571 571 55.9 50.7  203.5  3.1  1.5  300 18Y571
361 18Y571 011 56.1 50.0  214.9  2.8  1.3  300 18Y571
362 18Y571 012 56.6 50.4  210.5  3.2  1.5  300 18Y571
363 18Y571 013 55.9 50.2  211.2  2.7  1.3  300 18Y571
364 18Y571 014 55.8 50.2  211.2  3.1  1.5  300 18Y571
365 18Y571 015 55.9 50.1  211.6  2.8  1.3  300 18Y571
366 18Y571 016 55.6 50.0  213.9  3.2  1.5  300 18Y571
367 18Y571 017 56.1 50.0  213.9  2.8  1.3  300 18Y571
368 18Y571 018 56.3 50.0  213.9  3.0  1.4  300 18Y571
369 18Y571 019 56.1 50.6  205.8  3.2  1.6  300 18Y571
370 18Y571 571 55.8 50.3  209.9  2.6  1.2  300 18Y571
371 18Y571 571 55.7 50.0  213.9  3.1  1.4  300 18Y571
372 18Y571 571 55.7 50.1  212.6  2.8  1.3  300 18Y571
373 18Y571 571 56 50.1  211.6  2.8  1.3  300 18Y571
374 18Y571 571 56.5 50.1  214.5  2.8  1.3  300 18Y571
375 18Y571 571 56.1 50.3  210.8  2.8  1.3  300 18Y571
376 18Y571 026 56.2 50.3  210.8  3.2  1.5  300 18Y571
377 18Y571 571 56.3 50.0  214.9  3.1  1.4  300 18Y571
378 18Y571 571 56 50.2  212.2  2.9  1.4  300 18Y571
379 18Y571 571 56.7 50.2  211.2  3.0  1.4  300 18Y571
380 18Y571 030 56.1 50.1  213.5  2.6  1.2  300 18Y571
381 18Y571 031 55.9 50.0  213.9  2.8  1.3  300 18Y571
382 18Y571 032 55.9 54.0  163.8  2.6  1.6  300 18Y571
383 18Y571 033 56.3 50.1  212.6  2.8  1.3  300 18Y571
384 18Y571 034 55.9 50.5  207.1  3.2  1.5  300 18Y571
385 18Y571 035 56.3 50.3  210.8  3.0  1.4  300 18Y571
386 18Y571 036 56.3 50.4  208.5  2.8  1.3  300 18Y571
387 18Y571 037 55.7 50.3  211.8  2.7  1.3  300 18Y571
388 18Y571 038 56 50.0  217.9  2.8  1.3  300 18Y571
389 18Y571 039 56.1 50.0  212.9  3.1  1.5  300 18Y571
390 18Y571 040 56.2 50.2  211.2  2.8  1.3  300 18Y571
391 18Y571 041 56.6 50.6  205.8  2.6  1.3  300 18Y571
392 18Y571 042 56.4 50.1  212.6  3.3  1.6  300 18Y571
393 18Y571 043 56.2 50.2  213.2  2.6  1.2  300 18Y571
394 18Y571 044 55.8 50.4  208.5  2.7  1.3  300 18Y571
395 18Y571 045 55.7 50.0  213.9  2.8  1.3  300 18Y571
396 18Y571 046 56.4 50.0  213.9  3.3  1.5  300 18Y571
397 18Y571 047 56.1 50.2  213.2  3.2  1.5  300 18Y571
398 18Y571 048 56.2 50.0  213.9  2.7  1.3  300 18Y571
399 18Y571 049 56.4 50.1  214.5  3.1  1.4  300 18Y571
400 18Y571 050 56 50.4  210.5  3.2  1.5  300 18Y571

100% new high quality seamless steel pipe from Bao Shan Iron co.,ltd (Baosteel).
Total 5 working line make 3000pcs per day for oxygen gas cylinder, argon gas cylinder, helium gas cylinder, Nitrogen gas cylinder , Co2 gas cylinder, N2O gas cylinder..etc

China top 1 advanced heat treatment machine. And China top 1 internal polishing machine to make high purity gas cylinder with 99.999% oxygen gas, helium gas, N2O gas and argon gas….

100% Hydrostatic prssure test and leakage test to keep the quality

Advanced automatic  spraying working line make the spraying at high top quality , no any bubble , without shrinkage and distoration .

Japan imported shoulder marking machine make it the most qualified ones  .
DSW seamless gas cylinder have nice appearance shoulders because we use shape-correction machine treatment make the cylinder shoulder most beautiful shape which other supplier can’t be compared.

Laboratory test standard  ISO9809-3 and ISO9809-1, DOT-3AA, EN1964,GB5099 ..etc
Place of Origin: China

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right 1 for your needs.


A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between 2 objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between 2 moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.


There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are 2 main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.


The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the 4 control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing 1 control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with 1 or 2 mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of 2 metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find 1 that has a warranty and warranty.


To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China Good quality TUV 50L 200bar Gas Cylinder Export to South America     with Great qualityChina Good quality TUV 50L 200bar Gas Cylinder Export to South America     with Great quality