Tag Archives: hydraulic joint

China Best Sales Alstom Joint 180mm Main PAR Germany Hydraulic Torque Cylinder vacuum pump electric

Product Description

small piston double acting hydraulic cylinder

 

Product Description

 

Eaton, parker, hercules, prince, cross type double acting hydraulic cylinder are used for Trailer, Agricultural Machinery, Garbage Truck, Landing Platform etc.

Tsingshi hydraulic Customers,  MAN, JAC, VOLVO, SHACMAN, DAF, JMC,  HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG,  FOTON,etc.

1.Piston rod electroplate hard chrome;
2.lighter and easier to maintenance double acting hydraulic cylinder;
3.High quality alloy seamless steel pipe have better mechanical properties;
4.The world famous brands of seals, such as Parker, Merkel, Hallite, Kaden, etc;
5.World-class processing technology ensures stable and reliable quality.

                  

NO ITEM double acting hydraulic cylinder DATA
1 Material Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc
2 Honed tube 40-300mm, Heat treatment, honing, rolling
3 Honed tube 30-280mm, plated nickel or hard Chrome or ceramic
4 Seal kit Parker, Merkel, Hallite, Kaden, etc
5 Coating Sandblasting, primer paint, middle paint, finish paint,
Color can paint according to customer demands.
6 Technology double acting hydraulic cylinder
7 Mounting type Pin-eye , flange, trunnion mount,ball mount, screw thread.
FC, FE, FEE, FSE,TPIN
8 Working medium Hydraulic Oil
9 Working pressure 16-20Mpa double acting hydraulic cylinder
10 Temperature range -50°C to +100°C

Detailed Photos


 

Company Profile

Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-double acting hydraulic cylinder.

-double acting hydraulic cylinder Certification ISO9001 TS16949, etc;
-mini double acting hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM small double acting hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The micro double acting hydraulic cylinder can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.

 

CUSTOMERS PHOTOS

 

QUALITY GUARANTEE

 

HIGH QUALITITY GUARANTEE-double acting hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM Hydraulic Cylinder according to customer needs.
-Strong Hydraulic Cylinder production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.

<hydraulic cylinder double acting Leak Test

<mini hydraulic cylinder Buffer Test

<small hydraulic cylinder Reliability Test

<micro hydraulic cylinder Full Stroke Test

<mini double acting hydraulic cylinder Operation Test

<micro double acting hydraulic cylinder Pressure Tight Test

<small double acting hydraulic cylinder Load Efficiency Test
<double action hydraulic cylinder Start-up Pressure Test
<double acting hydraulic cylinder Testing the Effect of Limit

SALES AND SERVICE

 



 

PRODUCTS SERIES

 

ONE WORLD ONE LOVE

 


 

 

Certification: CE, ISO/Ts16949
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of precise positioning and control?

Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges:

1. Fluid Power Control:

– Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load.

2. Control Valves:

– Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements.

3. Proportional Control:

– Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control.

4. Position Feedback Sensors:

– To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately.

5. Servo Control Systems:

– Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances.

6. Integrated Automation:

– Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy.

7. Advanced Control Algorithms:

– Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions.

In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling.

hydraulic cylinder

Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads

Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:

  1. Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
  2. Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
  3. Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
  4. Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
  5. Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
  6. Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.

In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.

hydraulic cylinder

What factors should be considered when selecting the right hydraulic cylinder for an application?

When selecting the right hydraulic cylinder for an application, several important factors need to be considered. These factors help ensure that the chosen hydraulic cylinder is suitable for the specific requirements of the application and will perform reliably. Here are the key factors to consider:

1. Load Requirements:

– One of the crucial factors to consider is the load requirement of the application. Determine the maximum load that the hydraulic cylinder needs to handle. Consider both the static load (when the cylinder is stationary) and the dynamic load (when the cylinder is in motion). The load requirement will impact the cylinder’s bore size, rod diameter, and overall strength. Choose a hydraulic cylinder with a load capacity that exceeds the application’s maximum load to ensure safety and longevity.

2. Stroke Length:

– The stroke length refers to the distance the hydraulic cylinder needs to extend and retract to perform the desired motion. Measure the required stroke length based on the application’s operational requirements. It is essential to choose a hydraulic cylinder with a stroke length that matches or exceeds the required distance. Consider any potential variations or adjustments in the stroke length that may be needed in the future.

3. Operating Pressure:

– Consider the operating pressure required for the application. The hydraulic cylinder must be capable of withstanding the maximum pressure within the hydraulic system. Ensure that the selected cylinder has a pressure rating that exceeds the application’s maximum operating pressure. This ensures safety and prevents premature failure.

4. Speed Requirements:

– Determine the required speed of the hydraulic cylinder’s movement for the application. Consider both the extension and retraction speeds. Select a cylinder that can achieve the desired speed while maintaining precise control and stability. It is important to choose a cylinder that can handle the required speed without compromising performance or safety.

5. Mounting:

– Evaluate the available space and mounting requirements for the hydraulic cylinder. Consider the mounting type (such as flange, foot, trunnion, or clevis), the available mounting points, and any specific mounting constraints. Ensure that the selected cylinder can be easily and securely mounted in the desired location.

6. Environmental Factors:

– Assess the environmental conditions in which the hydraulic cylinder will operate. Consider factors such as temperature extremes, humidity, exposure to chemicals, dust, or corrosive substances. Choose a cylinder that is designed to withstand the specific environmental conditions of the application. This may involve selecting appropriate materials, coatings, or seals to ensure the longevity and performance of the cylinder.

7. Cylinder Configuration:

– Determine the appropriate cylinder configuration based on the application’s requirements. Consider factors such as single-acting or double-acting cylinders, telescopic cylinders for limited space, or custom configurations for unique applications. Evaluate the specific needs of the application to select the most suitable cylinder configuration.

8. Maintenance and Serviceability:

– Consider the maintenance and service requirements of the hydraulic cylinder. Evaluate factors such as ease of access for maintenance, availability of spare parts, and the reputation of the manufacturer or supplier in terms of customer support and after-sales service. Choosing a reliable and reputable brand can ensure ongoing support and availability of spare parts when needed.

9. Compliance and Standards:

– Depending on the industry and application, certain compliance standards may need to be met. Consider any industry-specific regulations, safety standards, or certifications that the hydraulic cylinder should comply with. Ensure that the selected cylinder meets the required standards and certifications for the application.

10. Cost and Budget:

– Finally, consider the cost and budget for the hydraulic cylinder. While it is important to select a cylinder that meets the application’s requirements, it is also necessary to consider the overall cost-effectiveness. Evaluate the initial purchase cost, long-term maintenance costs, and the expected lifespan of the cylinder. Balancing the cost and quality will help in selecting a hydraulic cylinder that provides the best value for the application.

By considering these factors in the selection process, it becomes possible to choose the right hydraulic cylinder that meets the specific requirements of the application in terms of load capacity, stroke length, operating pressure, speed, mounting, environmental conditions, maintenance needs, compliance, and cost-effectiveness. Proper selection ensures optimal performance, reliability, and longevity of the hydraulic cylinder in the intended application.

China Best Sales Alstom Joint 180mm Main PAR Germany Hydraulic Torque Cylinder   vacuum pump electricChina Best Sales Alstom Joint 180mm Main PAR Germany Hydraulic Torque Cylinder   vacuum pump electric
editor by CX 2023-11-18

China Standard Customized Welded Joint Double Acting Hydraulic Cylinder with 2′′ Bore 8′′ Stroke vacuum pump booster

Product Description

Customized Welded Joint Double Acting Hydraulic Cylinder with  2” Bore 8” Stroke


About Our Company

HangZhou GD Machinery Co., Ltd. is a specialized manufacturer and trader with main products: hydraulic cylinders, hydraulic power units, hydraulic manifolds-blocks, hydraulic flanges,pneumatic cylinders and custom-made components and parts, like industrial valves.

Our sales markets have covered our sales markets have covered North America, Europe, Australia and Japan.

About Welded Joint Hydraulic Cylinder

The Process Flow of Welded Joint Hydraulic Cylinder

The Machinery to Produce Welded Joint Hydraulic Cylinder

The Packing of Welded Joint Hydraulic Cylinder

Welcome to send us a quotation. We’d like to give you the best survice.

Certification: ISO9001
Pressure: 2500psi
Work Temperature: Normal Temperature
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

– The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

– Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

– Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

– The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

– The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

– Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

– Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

Integration of Hydraulic Cylinders with Equipment Requiring Rapid and Dynamic Movements

Hydraulic cylinders can indeed be integrated with equipment that requires rapid and dynamic movements. While hydraulic systems are generally known for their ability to provide high force and precise control, they can also be designed and optimized for applications that demand fast and dynamic motion. Let’s explore how hydraulic cylinders can be integrated with such equipment:

  1. High-Speed Hydraulic Systems: Hydraulic cylinders can be part of high-speed hydraulic systems designed specifically for rapid and dynamic movements. These systems incorporate features such as high-flow valves, optimized hydraulic circuitry, and responsive control systems. By carefully engineering the system components and hydraulic parameters, it is possible to achieve the desired speed and responsiveness, enabling the equipment to perform rapid movements.
  2. Valve Control: The control of hydraulic cylinders plays a crucial role in achieving rapid and dynamic movements. Proportional or servo valves can be used to precisely control the flow of hydraulic fluid into and out of the cylinder. These valves offer fast response times and precise flow control, allowing for rapid acceleration and deceleration of the cylinder’s piston. By adjusting the valve settings and optimizing the control algorithms, equipment can be designed to execute dynamic movements with high speed and accuracy.
  3. Optimized Cylinder Design: The design of hydraulic cylinders can be optimized to facilitate rapid and dynamic movements. Lightweight materials, such as aluminum alloys or composite materials, can be used to reduce the moving mass of the cylinder, enabling faster acceleration and deceleration. Additionally, the cylinder’s internal components, such as the piston and seals, can be designed for low friction to minimize energy losses and enhance responsiveness. These design optimizations contribute to the overall speed and dynamic performance of the equipment.
  4. Accumulator Integration: Hydraulic accumulators can be integrated into the system to enhance the dynamic capabilities of hydraulic cylinders. Accumulators store pressurized hydraulic fluid, which can be rapidly released to supplement the flow from the pump during high-demand situations. This stored energy can provide an extra boost of power, allowing for faster and more dynamic movements. By strategically sizing and configuring the accumulator, the system can be optimized for the specific rapid and dynamic requirements of the equipment.
  5. System Feedback and Control: To achieve precise and dynamic movements, hydraulic systems can incorporate feedback sensors and advanced control algorithms. Position sensors, such as linear potentiometers or magnetostrictive sensors, provide real-time position feedback of the hydraulic cylinder. This information can be used in closed-loop control systems to maintain precise positioning and execute rapid movements. Advanced control algorithms can optimize the control signals sent to the valves, ensuring smooth and dynamic motion while minimizing overshooting or oscillations.

In summary, hydraulic cylinders can be integrated with equipment that requires rapid and dynamic movements by utilizing high-speed hydraulic systems, employing responsive valve control, optimizing cylinder design, integrating accumulators, and incorporating feedback sensors and advanced control algorithms. These measures enable hydraulic systems to deliver the speed, responsiveness, and precision necessary for equipment operating in dynamic environments. By leveraging the capabilities of hydraulic cylinders, manufacturers can design and integrate systems that meet the requirements of applications demanding rapid and dynamic movements.

hydraulic cylinder

What benefits do hydraulic cylinders offer for tasks requiring heavy lifting or movement?

Hydraulic cylinders offer numerous benefits for tasks that involve heavy lifting or movement. Their unique design and characteristics make them well-suited for applications that require substantial force, precise control, and reliable operation. Here are the detailed benefits that hydraulic cylinders provide for such tasks:

1. High Force Generation:

– Hydraulic cylinders are capable of generating significant amounts of force. By utilizing hydraulic pressure, which can be easily amplified, hydraulic cylinders can exert substantial force to lift and move heavy loads. The force output of a hydraulic cylinder is directly proportional to the hydraulic pressure and the surface area of the piston. This high force capability makes hydraulic cylinders ideal for tasks that involve heavy lifting, pushing, or pulling.

2. Precise Control:

– Hydraulic cylinders offer precise control over the force and motion they generate. By regulating the flow of hydraulic fluid into the cylinder, the speed, direction, and position of the cylinder’s movement can be accurately controlled. This level of control is crucial for tasks that require precise positioning, delicate movements, or synchronization of multiple cylinders. It enables operators to perform operations with accuracy and minimize the risk of damage or accidents.

3. Safety:

– Hydraulic cylinders are designed with safety features to ensure the protection of both personnel and equipment. They incorporate overload protection mechanisms, such as relief valves, that prevent excessive force or pressure from damaging the system. Additionally, hydraulic cylinders allow for controlled and gradual movements, reducing the risk of sudden and uncontrolled motions that could pose safety hazards during heavy lifting or movement tasks.

4. Versatility and Adaptability:

– Hydraulic cylinders are versatile components that can be adapted to meet specific requirements. They can be customized based on factors such as force capacity, stroke length, speed, and mounting options, allowing them to be integrated into various types of machinery. This versatility makes hydraulic cylinders suitable for a wide range of applications, including construction, material handling, mining, agriculture, and more.

5. Smooth and Controlled Operation:

– Hydraulic cylinders provide smooth and controlled operation, ensuring efficient and reliable performance during heavy lifting or movement tasks. The hydraulic fluid acts as a cushioning medium, which helps dampen shocks and vibrations, resulting in smoother and quieter operation. This controlled operation also reduces the risk of damage to the load being lifted or the surrounding equipment.

6. Compact Design:

– Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size, compared to the forces they can generate, makes them suitable for applications where space is limited or weight restrictions apply. This compact design enables the integration of hydraulic cylinders into different types of equipment without compromising performance or efficiency.

7. Durability and Reliability:

– Hydraulic cylinders are built to withstand rigorous operating conditions and provide long-term reliability. They are constructed with robust materials, precise machining, and effective sealing systems to ensure durability and prevent fluid leakage. Hydraulic cylinders can withstand high pressures, heavy loads, and continuous use, making them suitable for demanding tasks involving heavy lifting or movement.

8. Energy Efficiency:

– Hydraulic cylinders contribute to energy efficiency in tasks requiring heavy lifting or movement. Hydraulic systems allow for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, which reduce energy consumption by optimizing the use of hydraulic fluid.

In summary, hydraulic cylinders offer several benefits for tasks that involve heavy lifting or movement. They provide high force generation, precise control, safety features, versatility, smooth operation, compact design, durability, and energy efficiency. These advantages make hydraulic cylinders indispensable components in various industries where heavy loads need to be lifted, pushed, or moved with accuracy and reliability.

China Standard Customized Welded Joint Double Acting Hydraulic Cylinder with 2′′ Bore 8′′ Stroke   vacuum pump booster	China Standard Customized Welded Joint Double Acting Hydraulic Cylinder with 2′′ Bore 8′′ Stroke   vacuum pump booster
editor by CX 2023-10-31

China Custom DIN 71752 71751 Rod End Threaded Spring Clevis Pin for Hydraulic Cylinder Gas Spring Joint Connecting near me supplier

Product Description

Product Parameters

 

Product Attribute: Material Carbon Steel or Strainless Steel
Usage Hydraulic. Pneumatic, and Control Cable
Structure U Shape
Power Pneumatic
Standard Standard, Nonstandard
Pressure Direction Double-acting Cylinder
Double-Acting Cylinder Type Common Cylinder
Special Cylinder Type Impact of the Cylinder
Combination Cylinder Type Gas-Liquid Pressurized Cylinder
Size G6X12-G35X72
Plaint Blue-White Zinc Coating
Type Clevis
Thread Standard and Nonstandard
Work Temperature Normal Temperature
Surface Treatment as Customer Requirements

 

Product Description

 

Clevises, DIN 71752

All the sandard-made and customized clevis are available.

1.Series : FK, FT, KE, FE, —-Clevises
PC, PM, PF, PD —-Bolts
Cl—– Folding Spring bolts
other componets used to assemble
2 Material: Clevis: Carbon Steel, Stainless Steel, Aluminum
Bolts: Carbon Steel, Stainless Steel
Folding Spring Bolts: Spring Steel, Carbon Steel
3. Finish: Polished and oiled, Zinc plating, nickel plating, passivating or others, as required
4. Thread: female thread/ male thread, right thread/left thread, fine-pitch thread/ normal thread
5. Remarks:
FK Series( female thread) and FT Series (male thread) are manufactured according to DIN 71752/ DIN ISO 8140 / CETOP. All the items from M4 to M48 are available. Most of them are in stock.
Clevise DIN71752, also named with forks and Rod Clevises, can be assembled with bolts, folding spring bolts or washer. You may select the assemble method as you like.

Company Profile

HangZhou CZPT International Trading Co., Ltd.

HangZhou CZPT Enterprise Co., Ltd.

Starting trade service from 2002 and manufacturing in 2006, HangZhou CZPT is a parts supplier for hydraulic cylinder and pneumatic cylinder application. In addition to the 3000 standard parts, we also offer our customers tailor-made articles or assemblies that are for special application. The main products are:

— Assembly hydraulic cylinder and components

— Pneumatic cylinder accessories

— Rod ends ( ball joint ends )

— Spherical plain bearing ( radial ball joint )

— Hydraulic fittings and adaptors

— Control cable and fittings for automobile or agricultural machinery

— PTO Shaft for Agricultural machinery

—Gear and Gear BOX

—Farm Blade

We were awarded the certification of quality management system ISO 9001: 2000 in Sept. 2006.

With well experienced staff of engineers and international salesmen, HangZhou CZPT has earned customers from global markets, products are exproted to Aisa, Europe, North America, South America, South Africa…etc.

With strict quality control before shipment during production, we provide products with geat quality and competitive price.

We know what the customer expects. Quality alone is not the only criteria, flexibility and service also turn a supplier into a partner.

 

Agricultural Parts

If you’ve been to a farm, you’ve probably seen all kinds of agricultural parts. These mechanical devices are used in agriculture and include hand tools, power tools, tractors and countless farm implements. If you’re not familiar with them, it’s time to review them. Read on to learn more about agricultural parts. Of course, if you’re looking for specific types, you’ll want to know what makes them different.

Steel

Modern farmers demand greater productivity and efficiency, lower fuel and other costs. Forged steel is 1 solution that meets both of these goals. With forged steel agricultural parts, the future of agriculture is bright. In this article, we’ll review some of the key steels used in agricultural equipment and their unique properties. Ultimately, you’ll save money and increase productivity. let’s start. How do steel agricultural parts work?
Steel is corrosion resistant. It can withstand the corrosive elements that agricultural equipment encounters in the field. Steel is also ductile, allowing for design flexibility. Because of these advantages, steel is the first choice for farm and hand tools. Steel also prevents soil from sticking, making cleanup easier. Stainless steel is 100% recyclable and may have antimicrobial properties. In addition to being resistant to corrosion, steel retains its integrity in outdoor conditions.
In addition to the quality of steel agricultural components, it is also important to choose a responsible manufacturer. Whether a company is responsible for the money or just for the money depends on the product the manufacturer offers. Some manufacturers may lack reputational advantages or have workmanship defects. Therefore, it is necessary to pay attention to certain aspects in the production process of steel farming accessories manufacturers.
agriculturalparts

Iron

Cast iron components for agricultural machinery are extremely durable and strong, and are manufactured to meet the needs of leading agricultural machinery manufacturers. They are available in a variety of shapes and weights and can also be customized to meet specific customer requirements. Here are some common uses for iron agricultural parts. Read on to learn about their capabilities and how they can benefit you. Agricultural iron parts are widely used in agricultural equipment such as tractors, combine harvesters, and combine harvesters. Agricultural machinery such as tractors, weeders and harvesters require iron components. Grey cast iron, cast steel and ductile iron are commonly used materials for agricultural machinery parts. The grey cast iron gearbox supports the drive shaft and ensures the correct installation of other components. Grey cast iron has excellent wear resistance and machinability, and also has a damping effect. Below are some common examples of gray iron agricultural machinery parts.

Aluminium

Some of the leading companies in the agricultural industry choose to use aluminium components in their equipment. CZPT is 1 of these companies. With more than 50 years of experience in the aluminum industry, the company has brought many innovations to the agricultural market. I recently had the opportunity to speak with Jonas Bjuhr, Director of Product Development at CZPT. He shares his insights on agricultural aluminum solutions and his philosophy on how the company does business.
Metal spinning process, also known as spinning and metal turning, is the transformation of metal cylindrical parts into hollow parts. The process works with a variety of metal bases, producing parts that are both strong and durable. Chicago Metal Company has been producing agricultural equipment parts since 1908. It is also known for producing straight seam lock seam irrigation pipes. To deliver the pipes, Chicago Metals will load railcars on the siding at its plant. However, the rise of PVC pipes has made this process unnecessary. The company has developed standard angle flange connection pipes.
agriculturalparts

Bronze

Bronze is a metal alloy composed of copper and tin. As an alloy, it binds 2 metals together at the molecular level to form a new material. Although people throughout history don’t know why tin and copper were combined to make bronze, an innovative blacksmith discovered the alloy and opened up new possibilities. Bronze agricultural parts are made from a variety of metals, including copper and tin. Below are some common examples.
Plants found at the Raj site are mainly fruit crops, but the archaeological site also includes large amounts of barley and emmer. The lack of chaff suggests that grain processing took place far from the site, suggesting that fruit crops played an important role in the agricultural life of the Raj in the 15th and 12th centuries BC. However, there is very little information on how the grain is processed.
Late Bronze Age sites have cadaveric remains of grains and legumes, but no new crops have been found. In the Iberian region, CZPT is more prominent, while other legumes are less common. Acorns are the only wild fruit consistently found at archaeological sites, suggesting their role in regional survival. The earliest recorded use of pits as storage facilities lasts at least 4,000 years.

Cast iron

CZPT manufactures cast iron agricultural parts that provide strength and durability to a wide variety of agricultural machinery. They meet the exacting specifications of leading agricultural machinery manufacturers, ensuring a reliable product in the field. The company offers a variety of weights and shapes, and can customize solutions for any application. Below are some of the most popular applications for cast iron agricultural parts. Each of these applications offers a range of advantages. The company’s engineers provide state-of-the-art technical solutions.
Cast iron products have a variety of uses in the construction and mining industries. These metals are used to build bridges, building frames, lamp posts, gates, and more. These metals also make excellent engineering materials for water pipes and sewers, manhole covers, and more. Below are some of the most common applications for cast iron agricultural parts. To learn more about the many applications of cast iron agricultural components, visit the university.

Aluminium alloy

If you are interested in replacing metal agricultural parts, consider the advantages of aluminium alloys. Not only is it lightweight, it is also non-corrosive and non-corrosive, making it a perfect replacement for heavier metals. And it’s also better for the environment, which is a growing concern. Learn what you can do with aluminum castings and why you should use them for your agricultural components. We can help you find the right alloy for the application and specific application you are using.
Aluminum alloys are available in different grades, which are further divided into various properties. Different grades are classified according to the main alloy composition. Alloys are selected based on their strength-to-weight ratio and other factors. In addition, they have high levels of ductility, workability and corrosion resistance. Because of these properties, aluminum alloys are widely used in aircraft and many other industrial applications.

Bronze Alloys

One of the most common uses of bronze alloys is in agricultural parts. Its copper-tin composition provides strength and durability. This alloy is also corrosion resistant. Many farmers use bronze for agricultural purposes, especially combine harvesters and other tools. The following article will describe the benefits of bronze in agricultural uses. Read on to learn more. The basic structure of bronze alloys is as follows. Bronze is composed of 88% copper and 12% tin. The ratio of tin increases with melting, while the ratio of copper to tin decreases.
This copper-based metal has unique properties that are indistinguishable by appearance alone. You should look for a metal specialist who can guide you to find the best fit for your needs. CZPT is 1 of the top copper suppliers and they manufacture their own products. The metal spinning process is the most versatile and consistent method of manufacturing parts. Bronze is a product of adding tin to copper and has many positive properties.
agriculturalparts

Cast Iron Alloys

CZPT provides rugged cast iron agricultural components for a variety of applications. These castings are manufactured to the exacting requirements of leading agricultural machinery manufacturers, ensuring a reliable product in the field. Their castings come in a variety of shapes and weights and can also be custom designed to meet individual customer requirements. The application of cast iron includes:
Ductile iron, also known as ductile iron, is a special property obtained by adding magnesium to the metal. It is a ductile iron that is spherical due to the addition of magnesium. In the manufacturing process, composition control is important because impurities such as sulfur and oxygen react with magnesium to form different types of ductile iron. These impurities change the shape of the graphite molecules. Different grades of ductile iron are obtained by manipulating the microcrystalline structure of the metal, making austempered ductile iron another type of cast iron.
This ferrite-containing iron is suitable for machining. Its microstructure is similar to mild steel, but it contains enough dissolved silicon to remove the metal’s stickiness. This means that ferritic cast iron castings do not require the addition of sulphur or lead. If high-speed machining is used, false chips will form on the cutting edge. However, the machinability of cast iron makes it an excellent choice for agricultural applications.
What makes agricultural parts so special?

If you’ve been to a farm, you’ve probably seen all kinds of agricultural parts. These mechanical devices are used in agriculture and include hand tools, power tools, tractors and countless farm implements. If you’re not familiar with them, it’s time to review them. Read on to learn more about agricultural parts. Of course, if you’re looking for specific types, you’ll want to know what makes them different.

Steel

Modern farmers demand greater productivity and efficiency, lower fuel and other costs. Forged steel is 1 solution that meets both of these goals. With forged steel agricultural parts, the future of agriculture is bright. In this article, we’ll review some of the key steels used in agricultural equipment and their unique properties. Ultimately, you’ll save money and increase productivity. let’s start. How do steel agricultural parts work?
Steel is corrosion resistant. It can withstand the corrosive elements that agricultural equipment encounters in the field. Steel is also ductile, allowing for design flexibility. Because of these advantages, steel is the first choice for farm and hand tools. Steel also prevents soil from sticking, making cleanup easier. Stainless steel is 100% recyclable and may have antimicrobial properties. In addition to being resistant to corrosion, steel retains its integrity in outdoor conditions.
In addition to the quality of steel agricultural components, it is also important to choose a responsible manufacturer. Whether a company is responsible for the money or just for the money depends on the product the manufacturer offers. Some manufacturers may lack reputational advantages or have workmanship defects. Therefore, it is necessary to pay attention to certain aspects in the production process of steel agricultural accessories manufacturers.

China Custom DIN 71752 71751 Rod End Threaded Spring Clevis Pin for Hydraulic Cylinder Gas Spring Joint Connecting     near me supplier China Custom DIN 71752 71751 Rod End Threaded Spring Clevis Pin for Hydraulic Cylinder Gas Spring Joint Connecting     near me supplier